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Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Usability
• Few lines of code changes

Accelerated inference
• Up to 12x faster & cheaper
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DeepSpeed Training: Reshaping the LLM Training Landscape

System capability to efficiently train models with trillions of parameters

Key training technologies:
 Zero Redundancy Optimizer (ZeRO)
 ZeRO-Infinity
 3D parallelism
 Memory and compute efficient MoE 

training
 Optimized CUDA/ROCm/CPU kernels
 Gradient compression 1-bit 

Adam/LAMB, 0/1 Adam
 Sparse Attention
 Mixture of quantization
 Progressive layer dropping
 Curriculum learning
 …

DeepSpeed Powered Massive Models:
o METRO-LM (5.4B)
o Microsoft-Turing NLG (17B)
o GPT Neo-X (20B)
o AlexaTM (20B)
o YaLM (100B)
o GLM (130B) 
o BLOOM: Big Science (176B)
o Jurrasic-1 (178B)
o Megatron-Turing NLG (530B)
o …



DeepSpeed Inference: Accelerated serving for LLMs and SLMs
 Many-GPU Dense transformer optimizations – powering large and very large models like Megatron-Turing 530B
 Massive Scale Sparse Model Inference– a trillion parameter MoE model inference under 25ms
 ZeRO-Inference –> 40x bigger model inference on single-GPU device

DeepSpeed Inference: SoTA latency and throughput across the large model inference landscape
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DeepSpeed OSS Impact

• 10x YoY growth of DeepSpeed usage
• 6 Million installs since release
• 356+ unique contributors
• 1.6k+ public packages have hard dependencies on DeepSpeed

• Open-source frameworks
• Hugging Face, PyTorch-Lightning, EleutherAI, MosaicML, etc.

• External companies
• Meta AI (FAIR), AstraZeneca, Fidelity, Salesforce, Intel, Bloomberg, Tencent, SAP, 

etc.
• National Labs

• Oak Ridge, Argonne, Lawrence Livermore, etc.



DeepSpeed is simple to use and extend! 
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MCR-DL
Quentin Anthony, Ammar Awan, Jeff Rasley, Yuxiong He, Aamir Shafi, Mustafa 
Abduljabbar, Hari Subramoni, and Dhabaleswar K. (DK) Panda - IPDPS ’23.

First work that explored the synergy of NCCL and MPI to push the envelope of performance!



Large models need parallelism
Max Parameter 

(in billions) Max Parallelism Compute 
Efficiency

Usability 
(Model Rewrite)

Data Parallel (DP) Approx. 1.2 >1000 Very Good Great

Model Parallel (MP) Approx. 20 Approx. 16 Good Needs Model Rewrite

MP + DP Approx. 20 >  1000 Good Needs Model Rewrite

Pipeline Parallel (PP) Approx. 100 Approx. 128 Very Good Needs Model Rewrite

PP + DP Approx. 100 > 1000 Very Good Needs Model Rewrite

MP + PP + DP > 1000 > 1000 Very Good Needs Significant Model 
Rewrite

ZeRO > 1000 > 1000 Very Good Great



• DL models use many parallelism schemes 
• A single model replica may span multiple GPUs
• Thus, requiring many different communication operations

Communication in Deep Learning models

Deep Learning Recommendation Model (DLRM)

Mixture of Experts (MoE)Ack: Slide borrowed from Quentin’s IPDPS ‘23 talk



• Currently, distributed DL frameworks require that the user choose a single communication backend
• Rarely-used communication operations (e.g. IGather) must be custom-implemented as needed

Limitations of Existing Solutions

• Consider DS-MoE. Given 
that communication time 
is split between AllReduce 
and AlltoAll, which 
backend should be used?

– MVAPICH2-GDR performs 
best for Alltoall, NCCL 
performs best for AllReduce

Ack: Slide borrowed from Quentin’s IPDPS ‘23 talk



• Benefits for DS-MoE [top] and DLRM [bottom] 
• Both primarily use AllReduce and AlltoAll
• Baseline results use a single backend for all operations
• MCR-DL coarsely chooses the best backend for each 

operation based on OMB results, MCR-DL-T uses tuning 
tables to choose the best backend based on the message size

• By using the best communication backends for each 
individual operation, MCR-DL-T reduces time spent in 
communication

MCR-DL Flagship Results

DLRM

DS-MoE

Ack: Slide borrowed from Quentin’s IPDPS ‘23 talk
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DeepSpeed-Ulysses
Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Reza Yazdani Aminabadi, Leon Song, Samyam 
Rajbhandari, Yuxiong He – ArXiV ’23, PODC ‘24

System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models



Motivation: Long sequence problems are all around us

Long context LLMs, chat apps and models (1K GPT-3 2022 ->128K Phi-3, 1M Gemini 2024) 

Book (chapter) level summarization

Health care predictive model conditioned on entire patient record 

Long-range high-resolution climate modelling

Multimodal AI



•Memory Inefficiency 
• Existing (data, tensor, pipeline) parallelism 
approaches cannot address memory demand of 
extreme long sequences

•Communication Inefficiency 
• Existing sequence parallelism approaches are 
not effective because of communication 
inefficiencies.

•Easy of use
• Existing approaches have limited usability 
requiring error prone code refactoring

8k

Microsoft DeepSpeed ZeRO-3

16k

8k 16k

72 TFLOPS
50 TFLOPS

162 TFLOPS

NVIDIA Megatron Sequence Parallelism

Out of memory

Communication inefficiency
slows down training

Challenges: Several Inefficiencies



DeepSpeed-Ulysses

• DeepSpeed-Ulysses is our 
technological innovation for long 
context optimization

• Key idea: partition tensors along 
sequence and head dimensions, use 
optimized alltoall collective for 
communication

• First long context system optimization to 
scale to 1M pretraining context length

• Trains 2.5x faster and 4x longer context 
length than Megatron-LM
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DeepSpeed-Ulysses: Key Features

Communication 
Efficiency

Memory 
Optimization

Attention 
Agnostic

Ease of Use and 
Open Source



DeepSpeed-Ulysses: Core Design
• Partitions individual samples along the sequence dimension
• Employs alltoall communication collective for attention computations

Converts sequence 
parallelism to head 

parallelism

Converts head 
parallelism back to 
sequence parallelism



Communication Volume Analysis

Existing work
(Megatron-LM’s SP) DeepSpeed-Ulysses

O(M) O(M/P)
Before Attention-block

After Attention-block

𝟑𝟑𝟑𝟑𝟑𝟑
𝑷𝑷N𝟑𝟑allgather all-to-all

𝟑𝟑𝟑𝟑
𝑷𝑷N𝟑𝟑reduce-

scatter
all-to-all

• Key: All-to-all communication
overhead is O(M/P)

(M= 𝟒𝟒𝟑𝟑𝟑𝟑/𝑷𝑷)(M= 𝟐𝟐𝟑𝟑𝟑𝟑)

All-to-all on DGX-type network 
(each GPU pair has a dedicated link)

M

M/P

M/P

M/P

P: GPU count, N: sequence length, h: hidden size



Communication Volume Analysis

Existing work
(Megatron-LM’s SP) DeepSpeed-Ulysses

O(M) O(M/P)

• DeepSpeed-Ulysses has less communication overhead

𝟑𝟑: message size ~ sequence length, 𝑷𝑷: GPU count

• Megatron-LM increases communication overhead as sequence length increases

• DeepSpeed-Ulysses can keep the communication volume consistent by increasing GPUs 
proportionally to sequence length



Parameter Memory Optimization
• DeepSpeed-Ulysses leverages DeepSpeed-ZeRO for memory parameter 

optimization
• Extends parameter sharding across both data and sequence parallel group
• Allgather communication collective in forward and backward pass

• Activation partitioning (DeepSpeed-Ulysses) + parameter sharding (DeepSpeed- 
ZeRO) enables larger batch sizes for higher training througput



Generality and Easy Use
 Agnostic to attention implementation
 Head parallelism allows for compatibility with different kind of attention

Compute 
QKV

Compute
Attention

OutputAttention-block (DS-Ulysses)

Classic 
Attention

Flash 
Attention

Sparse
Attention

all-to-all all-to-all

• Require minimal code changes

attn = Attention_Ulysses(attn, …)
context = attn(q, k, v)

Only wrap the 
attention module



Evaluation : Max Sequence Length
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Scales to 1M 
token context!

• GPT 1.2B model
• A100-40G



1.1X 1.5X 2.5X 2X
4X

2X

Significantly better throughput for large models

DS sequence parallelism (Ulysses) can train 2.5x faster 
and 4x longer sequences than SoTA

Comparison with Existing Approach



Ongoing and Future work

• Ongoing work focuses on framework generalization, advanced 
optimization and democratization

• HuggingFace integration for post training, finetuning and broad model 
evaluation

• Computation-communication overlap
• 10% improvement over baseline
• Contribution from Intel

• Ulysses-Offload (summer intern project)
• Leverages memory hierarchies
• Enables training sequences over 2 million tokens for a 13B model using just a single node
• 4x improvement over baseline

• Explore the synergy of MVAPICH and NCCL?
• Which student is coming to Microsoft for Internship next? 
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ZeRO++
Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia Wu, Connor Holmes, Zhewei 
Yao, Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, Yuxiong He – ICLR ‘23

Extremely Efficient Collective Communication for Large Model Training



Motivation

• Large model requires large #GPUs to train
• Max batch size has a limit
• Large number of GPU implies smaller batch per GPU 

• Communication, a significant overhead
• Frequent communication with small batch size

• Make efficient large-scale training accessible
• ZeRO: Easy-to-use large model training
• Develop techniques to reduce communication 

volume for better efficiency

Model size grows exponentially

ZeRO: a key enabler of large-scale training
25



Communication Characterization for ZeRO
• ZeRO partitions model states

• Utilize aggregate GPU memory
• Communication collectives to fetch required model states during training

• Communication Volume Breakdown (model size M):
1. Forward all-gather on weights: M
2. Backward all-gather on weights: M
3. Backward reduce-scatter on gradients: M

• Total Volume: 3M

How to reduce communication volume?

26



1: Reduce forward all-gather Comm
• Communicate 8-bit quantized weights

• But naïve quantization causes model divergence 

• Blocked quantization
• Reduce quantization granularity to improve precision
• 3.3x precision improvement in Euclidean distance
• Optimized kernels for 2.5x faster performance over 

pytorch

• E2E comm reduction: 3M 2.5M
• Forward all-gather:  M  0.5M
• Backward all-gather: M
• Backward reduce-scatter: M

0.631 -6.529 -9.220
-3.044 -2.475 4.690
-8.441 2.901 -5.707

9 -90 -127
-42 -34 65

-116 40 -79

0.653 -6.534 -9.220
-3.049 -2.468 4.719
-8.421 2.904 -5.735

0.631 -6.529 -9.220
-3.044 -2.475 4.690
-8.441 2.901 -5.707

127 -128 -128
24 -18 127

-128 127 -64

0.631 -6.53 -9.220
-3.033 -2.461 4.690
-8.44 2.901 5.729

Quantize

Dequantize

Quantization 
Error: 2.937E-04

Quantization 
Error: 9.005E-05
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Machine 1Machine 0

G0 G1 G3G2

P0 P1 P2 P3

P0

P1

P2

P3

P0 P1 P2 P3 P0 P1 P2 P3

P0

P3

P1

P2

hpZeRO All-gather (on Rank 0)

2: Reduce backward all-gather Comm
• Heterogeneous partitioning (hpZeRO)

• Model weights within node, rest across all 
nodes

• All-gather happens within node only
• Trade off between memory and 

communication
• Eliminates backward all-gather across 

nodes

• E2E comm reduction: 3M 1.5M
• Forward all-gather:  M  0.5M
• Backward all-gather: M  0
• Backward reduce-scatter: M

Basic All-gather (on Rank 0)
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3: Reduce backward reduce-scatter Comm
• Can we quantize gradient communication ?

• Significant precision loss due to reduction operations

• Novel hierarchical All-to-All replacing reduce-scatter
• Communicate in 4 or 8-bits
• Reduce in full-precision

• Solves multiple system and algorithmic challenges
• Details illustration later

• E2E comm reduction: 3M 0.75M
• Forward all-gather:  M  0.5M
• Backward all-gather: M  0
• Backward reduce-scatter: M  0.25M

29



Breakdown of ZeRO communication cost (consider a model of size M):

1. Forward all-gather (size M)        (size 0.5M)

2. Backward all-gather (size M)          (size 0)

3. Backward reduce-scatter (size M)                    (size 0.25M)

Methodology Summary

Accurate & Efficient Quantization

Heterogeneous Partitioning (hpZeRO)

Novel Quantized Collective 

Overall communication reduction: 3M -> 0.75M

30



System Design for Gradients Communication

G0 G1 G3G2

Q D QD Q D QD

D DequantizeQ Quantize

NCCL Ring based reduce_scatter

# of sequential Q+D == # of GPUs

Too many Quantizations

Initial Challenges for Quantization on Gradients:
• No existing collectives for quantized gradient communication
•  1-bit Adam optimizer cannot be applied at ZeRO-3.
• Directly apply quantization on reduce_scatter has longer latency & lower precision

31



System Design for Gradients Communication
Challenge 1: Too many Quantizations
Solution 1: Replacing ring-based reduce_scatter with 1-hop all_to_all

Our 1-hop all_to_all
# of sequential Q+D == 1

1 2 3 4

32

All_to_All
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Machine 1Machine 0

G0 G1 G3G2

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Quantize

Dequantize+Reduce

G0 G1 G3G2

Q D QD Q D QD

D DequantizeQ Quantize

NCCL Ring-based reduce_scatter
# of sequential Q+D == # of GPUs



System Design for Gradients Communication
Challenge 2: Issue with 1-hop all_to_all -> communication volumes blow-up

Machine 0

...G0 G_N

Machine 1

...G0 G_N

M

Reduce-scatter M

Machine 0

...G0 G_N

Machine 1

...G0 G_N

M/4

1-hop all-to-all N*M/4

M/4 M/4

N gpu per node, model size M

Machine 0

...G0 G_N

Machine 1

...G0 G_N

Step 1: intra node all-to-all 
and reduction (M/(4N))
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Solution 2: Hierarchical all-to-all



System Design for Gradients Communication

34

Challenge 3: Hierarchical all-to-all (Data-misplacement)
Solution 3: Tensor slices reordering

Machine 1Machine 0

G0 G1 G3G2

1 23 4 1 23 4 1 23 4 1 23 4

1 3 2 4

2 41 3

1 3 2 4

2 41 3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Step 1: intra-node all_to_all

2 41 3 2 41 3

2 41 3 2 41 3

Machine 1Machine 0

G0 G1 G3G2

2

4

1

32

4

1

3

1 2 3 4

Step 2: inter-node all_to_all



Further Optimization: kernel fusion & overlapping
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Machine 1Machine 0

G0 G1 G3G2

Tensor slice reordering1 23 4 1 23 4 1 23 4 1 23 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Quantization
1 3 2 4

2 41 3
Intra-node All-to-All Communication

1 3 2 4

2 41 3
Dequantization

Intra-node Reduction2 41 3 2 41 3
Quantization

Inter-node All-to-All Communication
2

4

1

32

4

1

3

Dequantization
Inter-node Reduction4321

Chunk 1

Chunk 2
Fused kernels

Reduce up to 80% gradient comm. time 
with only 128 GPUs



End-to-end Evaluation

• ZeRO++ on different number of GPUs
• ZeRO++ improves throughput on different 

scalability levels
• 100Gbps: 121% - 140% speedup
• 800Gbps: 8% - 30% speedup

• ZeRO++ on different sizes of models
• ZeRO++ shows consistent speedup regardless of 

model size
• 100Gbps: over 100% speedup
• 800Gbps: up to 30% speedup
• 10Gbps: up to 300% speedup

36



End-to-end Evaluation (Cont.)

• ZeRO++ democratizes large scale training
• ZeRO++ can achieve the same or better 

throughput with only ¼ of bandwidth
• Confirms our 4x communication reduction

• Ablation study of individual optimizations
• ZeRO++ achieves a good composition of 

individual optimizations

37



Summary of ZeRO++

• 3 novel communication optimizations on top of ZeRO
• Reduce communication volume from 3M to 0.75M

• End-to-end evaluations show 50%-140% speedup on various test scenarios

• Open-sourced as part of DeepSpeed

• LinkedIn reports 2.4x speedup in their training stack by using ZeRO++

• Read more details in the paper: “ZeRO++: expand scalability to power bigger 
models on more devices by minimizing communication cost” – ICLR ‘23

38
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Exploring new ideas: MVAPICH + 
NCCL can unlock next level of 
performance!

• Impact-first mindset vs. publication-first mindset

• Build on top vs. build from scratch
• Collaborate not compete! But also, collaborate and compete!



© Copyright Microsoft Corporation. All rights reserved. 

We are looking for people and organizations to support the open-source 
DeepSpeed ecosystem

Make your first pull request 
 

https://github.com/microsoft/DeepSpeed 

www.deepspeed.ai

https://github.com/microsoft/DeepSpeed
http://www.deepspeed.ai/
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