

#### DeepSpeed and Trillion-parameter LLMs: Can synergy of MPI and NCCL improve scalability and efficiency? MVAPICH MUG '24

#### **Ammar Ahmad Awan**

(on behalf of several DeepSpeed team members at Microsoft and SnowFlake)

https://github.com/microsoft/DeepSpeed

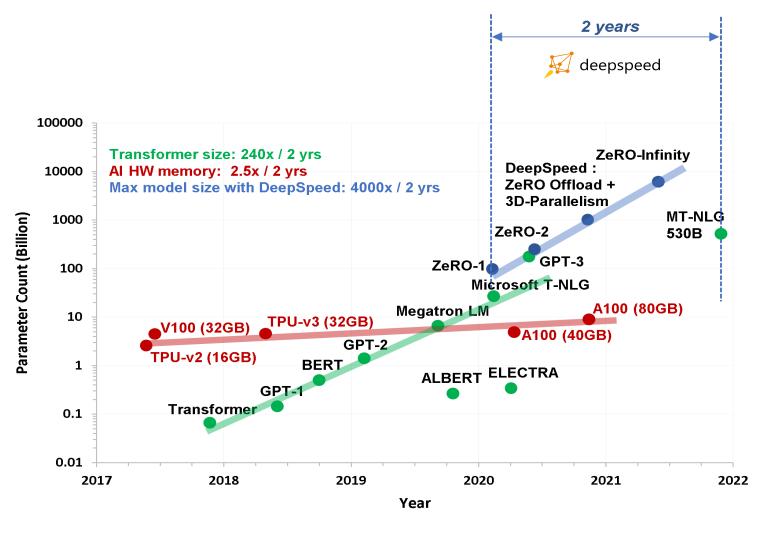
#### DeepSpeed Training: Reshaping the LLM Training Landscape

#### DeepSpeed Powered Massive Models:

- METRO-LM (5.4B)
- Microsoft-Turing NLG (17B)
- o GPT Neo-X (**20B**)
- o AlexaTM (20B) a
- YaLM (100B) Yandex
- o GLM (130B) 💮
- BLOOM: Big Science (176B) 🐲
- Jurrasic-1 (178B) Al21 labs
- Megatron-Turing NLG (530B) Solution
- o ...

#### Key training technologies:

- Zero Redundancy Optimizer (ZeRO)
- ZeRO-Infinity
- **3**D parallelism
- Memory and compute efficient MoE training
- Optimized CUDA/ROCm/CPU kernels
- Gradient compression 1-bit Adam/LAMB, 0/1 Adam
- □ Sparse Attention
- Mixture of quantization
- Progressive layer dropping
- Curriculum learning

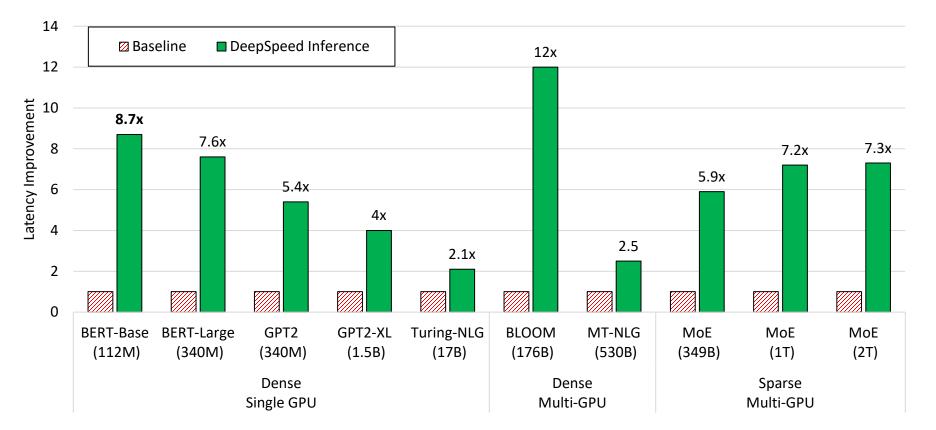


System capability to efficiently train models with trillions of parameters

...

#### DeepSpeed Inference: Accelerated serving for LLMs and SLMs

- □ Many-GPU Dense transformer optimizations *powering large and very large models like Megatron-Turing 530B*
- □ Massive Scale Sparse Model Inference- *a trillion parameter MoE model inference under 25ms*
- □ ZeRO-Inference -> 40x bigger model inference on single-GPU device



DeepSpeed Inference: SoTA latency and throughput across the large model inference landscape

#### **DeepSpeed OSS Impact**

- 10x YoY growth of DeepSpeed usage
- 6 Million installs since release
- 356+ unique contributors
- 1.6k+ public packages have hard dependencies on DeepSpeed
  - Open-source frameworks
    - Hugging Face, PyTorch-Lightning, EleutherAI, MosaicML, etc.
  - External companies
    - Meta AI (FAIR), AstraZeneca, Fidelity, Salesforce, Intel, Bloomberg, Tencent, SAP, etc.
  - National Labs
    - Oak Ridge, Argonne, Lawrence Livermore, etc.



#### DeepSpeed is simple to use and extend!

#### •••

# construct torch.nn.Module
model = MyModel()

# wrap w. DeepSpeed engine
engine, \*\_ = deepspeed.initialize(
 model=model,
 config=ds\_config

# training-loop w.r.t. engine
for batch in data\_loader:
 loss = engine(batch)
 engine.backward(loss)
 engine.step()

#### •••

```
ds_config = {
  "optimizer": {
    "type": "Adam",
    "params": {"lr": 0.001}
  },
  "zero": {
    "stage": 3,
    "offload_optimizer": {
        "device": "[cpu|nvme]"
    },
    "offload_param": {
        "device": "[cpu|nvme]"
```

# MCR-DL

+

0

Quentin Anthony, Ammar Awan, Jeff Rasley, Yuxiong He, Aamir Shafi, Mustafa Abduljabbar, Hari Subramoni, and Dhabaleswar K. (DK) Panda - <u>IPDPS '23</u>.

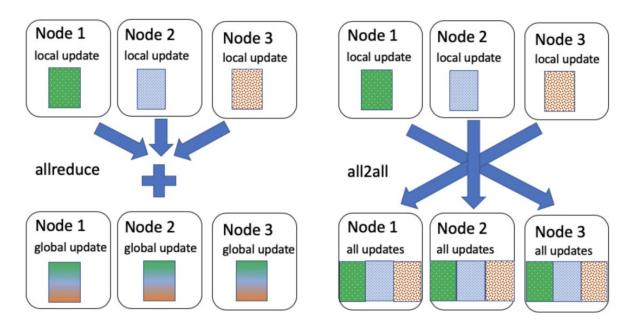
*First work that explored the synergy of NCCL and MPI to push the envelope of performance!* 

#### Large models need parallelism

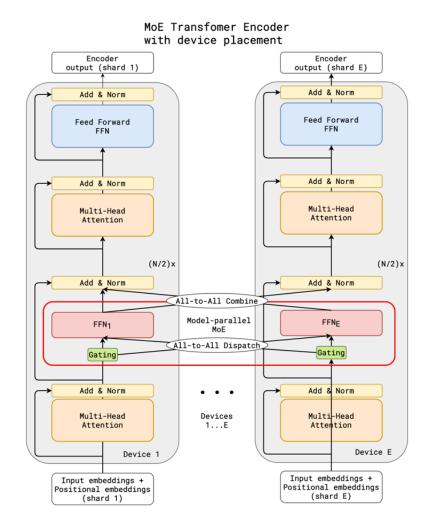
|                        | Max Parameter<br>(in billions) | Max Parallelism | Compute<br>Efficiency | Usability<br>(Model Rewrite)       |  |
|------------------------|--------------------------------|-----------------|-----------------------|------------------------------------|--|
| Data Parallel (DP)     | Approx. 1.2                    | >1000           | Very Good             | Great                              |  |
| Model Parallel (MP)    | Approx. 20                     | Approx. 16      | Good                  | Needs Model Rewrite                |  |
| MP + DP                | Approx. 20                     | > 1000          | Good                  | Needs Model Rewrite                |  |
| Pipeline Parallel (PP) | Approx. 100                    | Approx. 128     | Very Good             | Needs Model Rewrite                |  |
| PP + DP                | Approx. 100                    | > 1000          | Very Good             | Needs Model Rewrite                |  |
| MP + PP + DP           | > 1000                         | > 1000          | Very Good             | Needs Significant Model<br>Rewrite |  |
|                        |                                |                 |                       |                                    |  |
| ZeRO                   | > 1000                         | > 1000          | Very Good             | Great                              |  |

#### **Communication in Deep Learning models**

- DL models use many parallelism schemes
  - A single model replica may span multiple GPUs
  - Thus, requiring many different communication operations



Deep Learning Recommendation Model (DLRM)



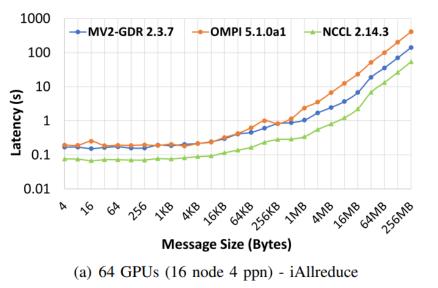
Mixture of Experts (MoE)

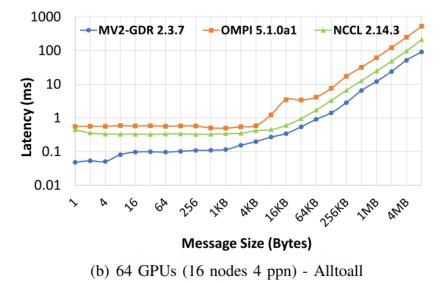
#### **Limitations of Existing Solutions**

| Studies                    | Features       |                       |                    |                                |                             |                    |  |  |
|----------------------------|----------------|-----------------------|--------------------|--------------------------------|-----------------------------|--------------------|--|--|
|                            | Point-to-Point | Collectives           | Vector Collectives | <b>Non-Blocking Operations</b> | Mixed-Backend Communication | Backend as a Class |  |  |
| Horovod                    | ×              | ~                     | ×                  | NCCL Only                      | Experimental                | ×                  |  |  |
| PyTorch Distributed Module | ~              | ~                     | ×                  | NCCL Only                      | ×                           | <b>v</b>           |  |  |
| LBANN                      | ~              | ~                     | ×                  | ~                              | ×                           | ×                  |  |  |
| mpi4py[17]                 | ~              | ✓                     | <b>v</b>           | <b>v</b>                       | ×                           | ×                  |  |  |
| Proposed MCR-DL            | ~              | <ul> <li>✓</li> </ul> | <b>v</b>           | V                              | <ul> <li>✓</li> </ul>       | <b>v</b>           |  |  |

- Currently, distributed DL frameworks require that the user choose a single communication backend
- Rarely-used communication operations (e.g. IGather) must be custom-implemented as needed
- Consider DS-MoE. Given that communication time is split between AllReduce and AlltoAll, which backend should be used?
  - MVAPICH2-GDR performs best for Alltoall, NCCL performs best for AllReduce

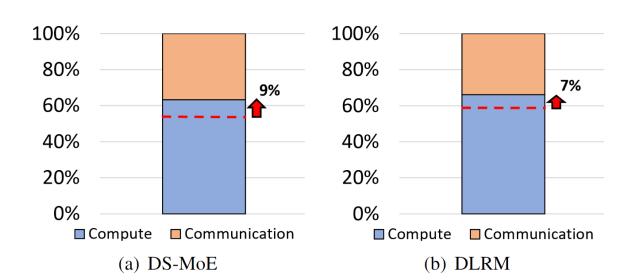
Ack: Slide borrowed from Quentin's IPDPS '23 talk

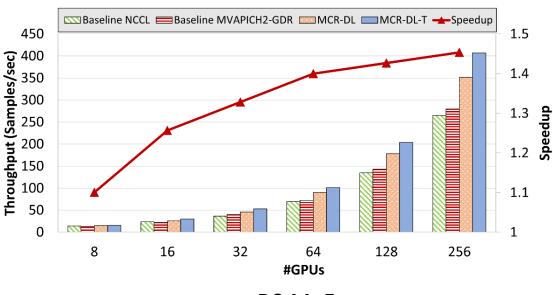




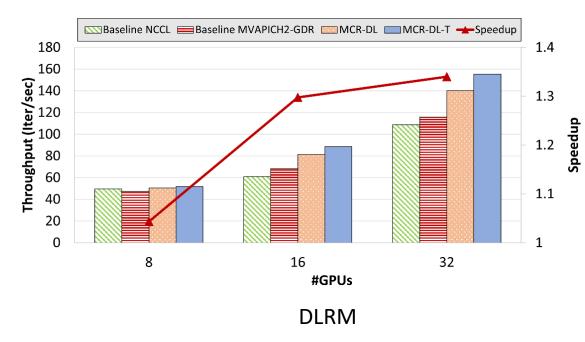
#### MCR-DL Flagship Results

- Benefits for DS-MoE [top] and DLRM [bottom]
- Both primarily use AllReduce and AlltoAll
- Baseline results use a single backend for all operations
- *MCR-DL* coarsely chooses the best backend for each operation based on OMB results, *MCR-DL-T* uses tuning tables to choose the best backend based on the message size
- By using the best communication backends for each individual operation, MCR-DL-T reduces time spent in communication





DS-MoE



# DeepSpeed-Ulysses

+

0

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Reza Yazdani Aminabadi, Leon Song, Samyam Rajbhandari, Yuxiong He – <u>ArXiV '23, PODC '24</u>

System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models

#### Motivation: Long sequence problems are all around us



Long context LLMs, chat apps and models (1K GPT-3 2022 ->128K Phi-3, 1M Gemini 2024)



Book (chapter) level summarization



Health care predictive model conditioned on entire patient record



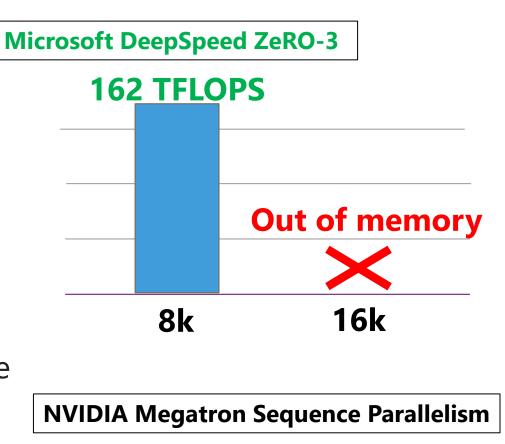
Long-range high-resolution climate modelling



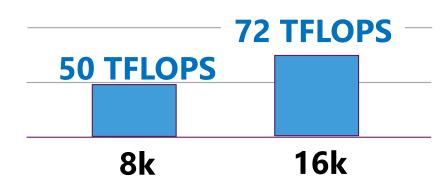
Multimodal AI

#### **Challenges: Several Inefficiencies**

- Memory Inefficiency
  - Existing (data, tensor, pipeline) parallelism approaches cannot address memory demand of extreme long sequences
- Communication Inefficiency
  - Existing sequence parallelism approaches are not effective because of communication inefficiencies.
- •Easy of use
  - Existing approaches have limited usability requiring error prone code refactoring

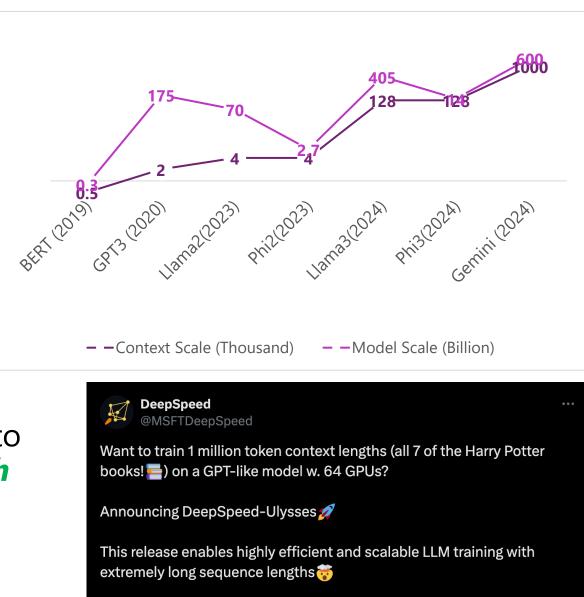


Communication inefficiency slows down training



#### **DeepSpeed-Ulysses**

- DeepSpeed-Ulysses is our technological innovation for long context optimization
  - Key idea: partition tensors along sequence and head dimensions, use optimized alltoall collective for communication
  - First long context system optimization to scale to *1M pretraining context length*
  - Trains 2.5x faster and 4x longer context length than Megatron-LM



github.com/microsoft/Deep...

#### DeepSpeed-Ulysses: Key Features



Communication Efficiency



Memory Optimization

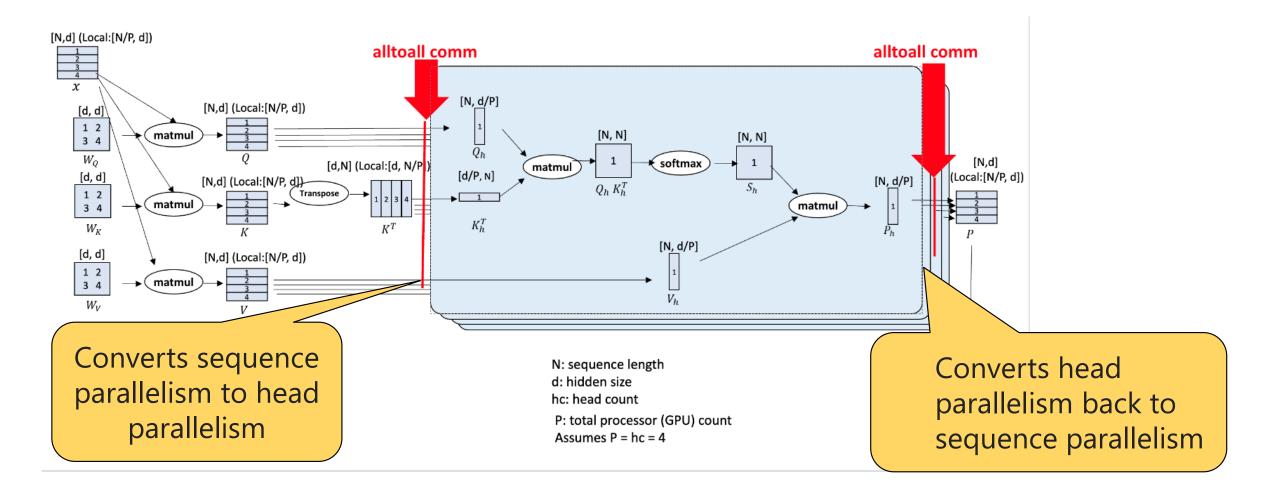


Attention Agnostic  $\mathbf{O}$ 

Ease of Use and Open Source

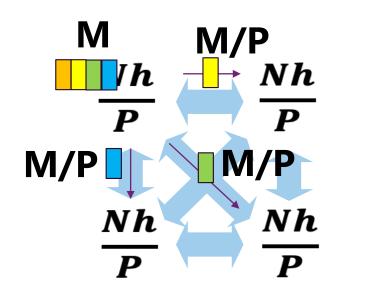
#### DeepSpeed-Ulysses: Core Design

Partitions individual samples along the sequence dimension
Employs alltoall communication collective for attention computations

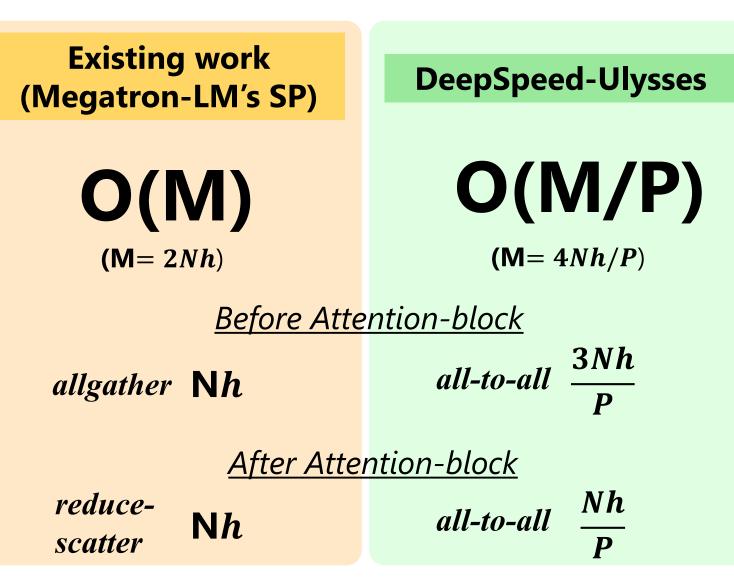


#### **Communication Volume Analysis**

 Key: All-to-all communication overhead is O(M/P)



All-to-all on DGX-type network (each GPU pair has a dedicated link)



**P**: GPU count, **N**: sequence length, **h**: hidden size

#### **Communication Volume Analysis**

DeepSpeed-Ulysses has <u>less communication overhead</u>

Existing work (Megatron-LM's SP)

**DeepSpeed-Ulysses** 

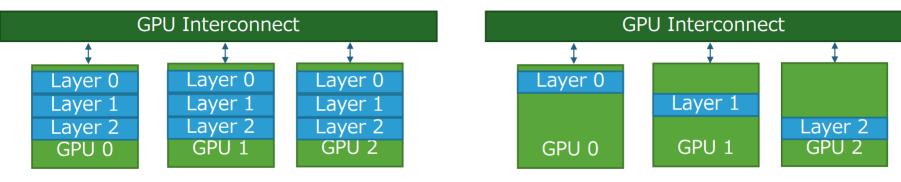
## O(M) O(M/P)

*N*: message size ~ sequence length, *P*: GPU count

- **Megatron-LM** increases communication overhead as sequence length increases
- DeepSpeed-Ulysses can keep the communication volume consistent by increasing GPUs
  proportionally to sequence length

#### Parameter Memory Optimization

- DeepSpeed-Ulysses leverages DeepSpeed-ZeRO <u>for memory parameter</u> <u>optimization</u>
  - Extends parameter sharding across both data and sequence parallel group
  - Allgather communication collective in forward and backward pass



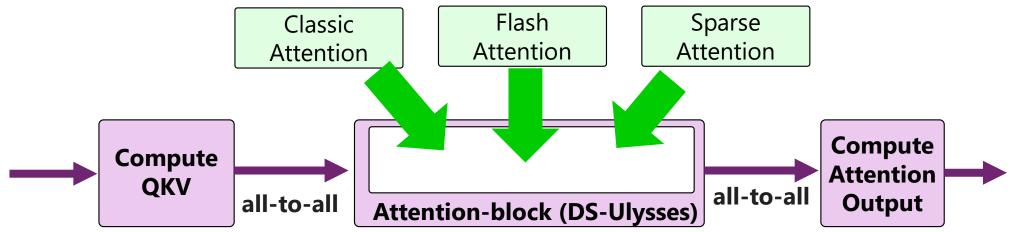
Model States mapping in Data Parallel Training

Model States mapping in **ZeRO** Training

• Activation partitioning (DeepSpeed-Ulysses) + parameter sharding (DeepSpeed-ZeRO) enables larger batch sizes for higher training througput

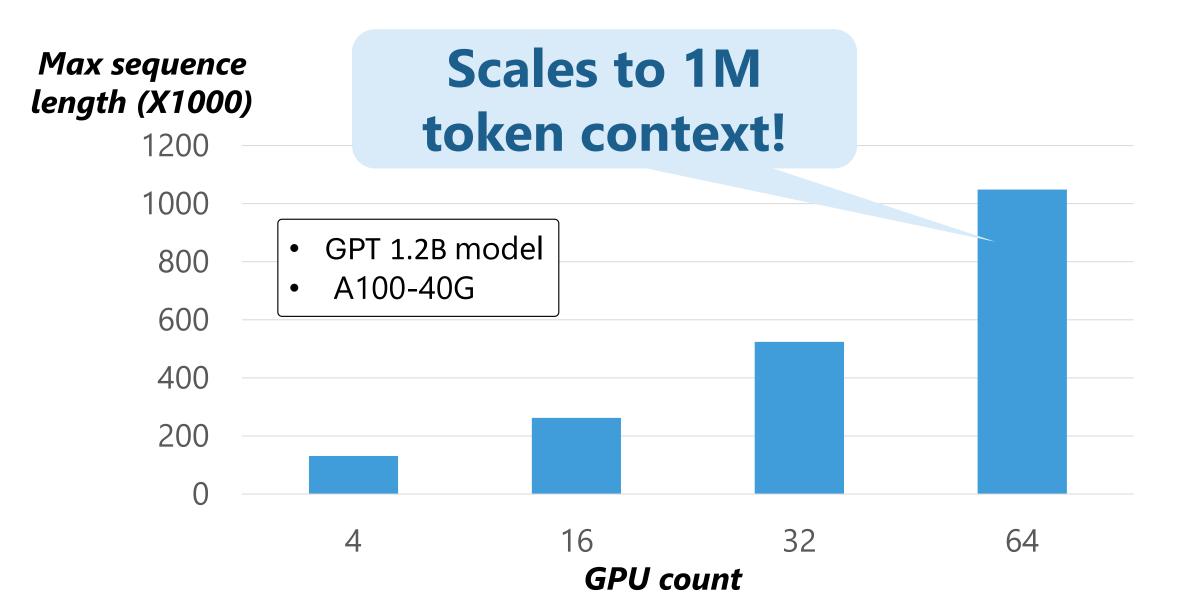
#### **Generality and Easy Use**

- · Agnostic to attention implementation
- $\cdot$  Head parallelism allows for compatibility with different kind of attention



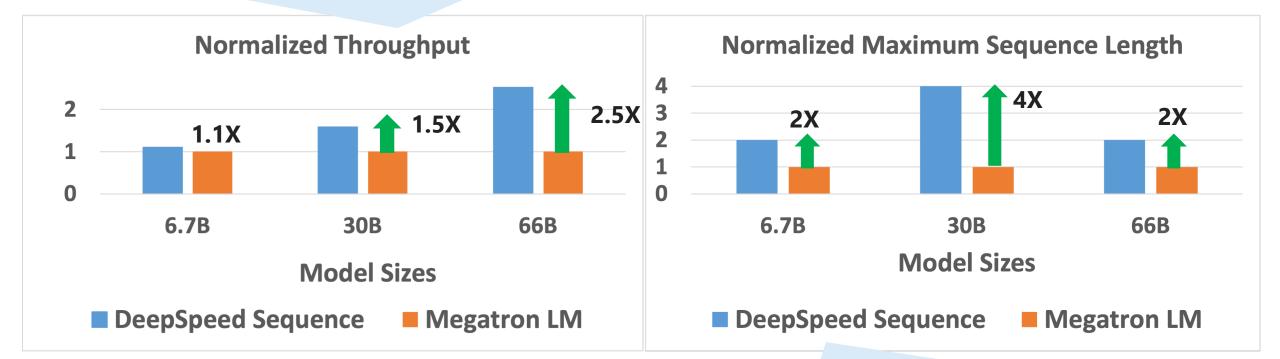


#### **Evaluation : Max Sequence Length**



#### **Comparison with Existing Approach**

#### Significantly better throughput for large models



DS sequence parallelism (Ulysses) can train 2.5x faster and 4x longer sequences than SoTA

#### Ongoing and Future work

- Ongoing work focuses on framework generalization, advanced optimization and democratization
  - HuggingFace integration for post training, finetuning and broad model evaluation
  - Computation-communication overlap
    - 10% improvement over baseline
    - Contribution from Intel
  - Ulysses-Offload (summer intern project)
    - Leverages memory hierarchies
    - Enables training sequences over 2 million tokens for a 13B model using just a single node
    - 4x improvement over baseline
- Explore the synergy of MVAPICH and NCCL?
  - Which student is coming to Microsoft for Internship next? ©

# \* • ZeRO++

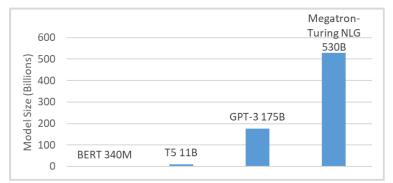
0

Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia Wu, Connor Holmes, Zhewei Yao, Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, Yuxiong He – <u>ICLR '23</u>

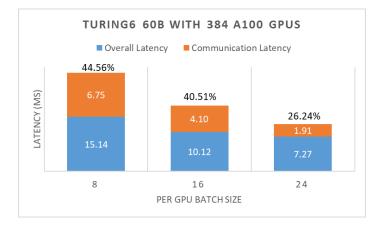
**Extremely Efficient Collective Communication for Large Model Training** 

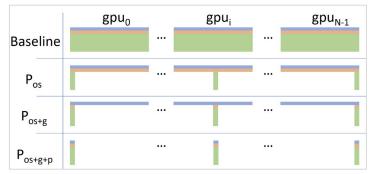
#### Motivation

- Large model requires large #GPUs to train
  - Max batch size has a limit
  - Large number of GPU implies smaller batch per GPU
- Communication, a significant overhead
  - Frequent communication with small batch size
- Make efficient large-scale training accessible
  - ZeRO: Easy-to-use large model training
  - Develop techniques to reduce communication volume for better efficiency



#### Model size grows exponentially





ZeRO: a key enabler of large-scale training

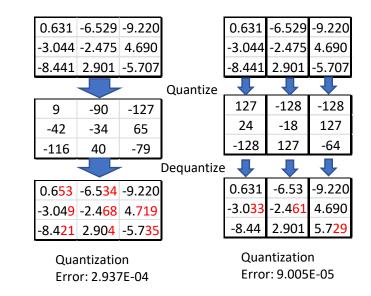
## Communication Characterization for ZeRO

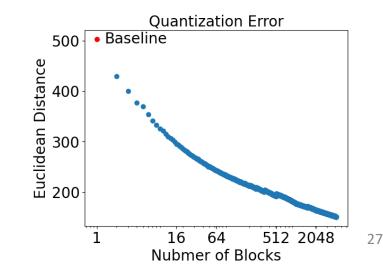
- ZeRO partitions model states
  - Utilize aggregate GPU memory
  - Communication collectives to fetch required model states during training
- Communication Volume Breakdown (model size M):
  - 1. Forward all-gather on weights: *M*
  - 2. Backward all-gather on weights: *M*
  - 3. Backward reduce-scatter on gradients: M
- Total Volume: 3M

#### *How to reduce communication volume?*

## 1: Reduce forward all-gather Comm

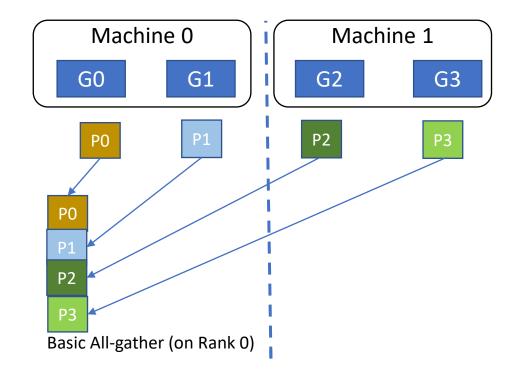
- Communicate 8-bit quantized weights
  - But naïve quantization causes model divergence
- Blocked quantization
  - Reduce quantization granularity to improve precision
  - 3.3x precision improvement in Euclidean distance
  - Optimized kernels for 2.5x faster performance over pytorch
- E2E comm reduction: *3M → 2.5M* 
  - Forward all-gather:  $M \rightarrow 0.5M$
  - Backward all-gather: M
  - Backward reduce-scatter: M





## 2: Reduce backward all-gather Comm

- Heterogeneous partitioning (hpZeRO)
  - Model weights within node, rest across all nodes
  - All-gather happens within node only
  - Trade off between memory and communication
- Eliminates backward all-gather across nodes



- E2E comm reduction: *3M → 1.5M* 
  - Forward all-gather:  $M \rightarrow 0.5M$
  - Backward all-gather:  $M \rightarrow 0$
  - Backward reduce-scatter: M

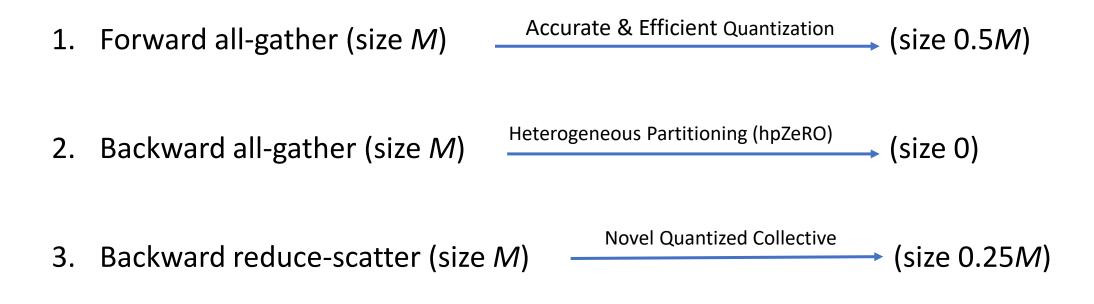
## 3: Reduce backward reduce-scatter Comm

- Can we quantize gradient communication ?
  - Significant precision loss due to reduction operations
- Novel hierarchical All-to-All replacing reduce-scatter
  - Communicate in 4 or 8-bits
  - Reduce in full-precision
- Solves multiple system and algorithmic challenges
  - Details illustration later
- E2E comm reduction: 3M → 0.75M
  - Forward all-gather:  $M \rightarrow 0.5M$
  - Backward all-gather:  $M \rightarrow 0$
  - Backward reduce-scatter: *M* → 0.25*M*



## Methodology Summary

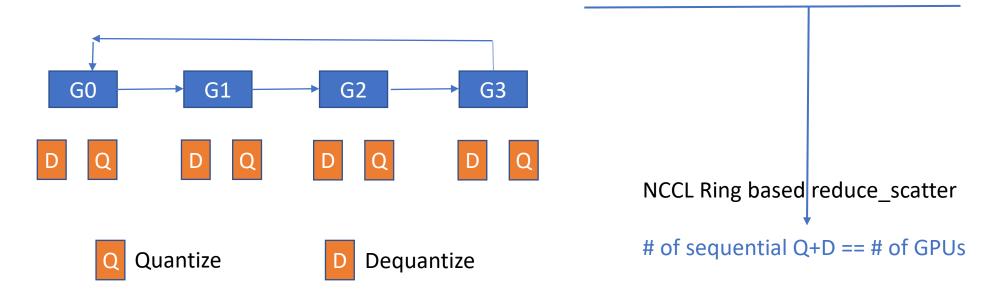
Breakdown of ZeRO communication cost (consider a model of size *M*):



Overall communication reduction: 3M -> 0.75M

#### Initial Challenges for Quantization on Gradients:

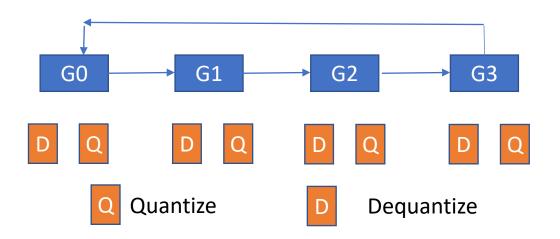
- No existing collectives for quantized gradient communication
- 1-bit Adam optimizer cannot be applied at ZeRO-3.
- Directly apply quantization on reduce\_scatter has longer latency & lower precision



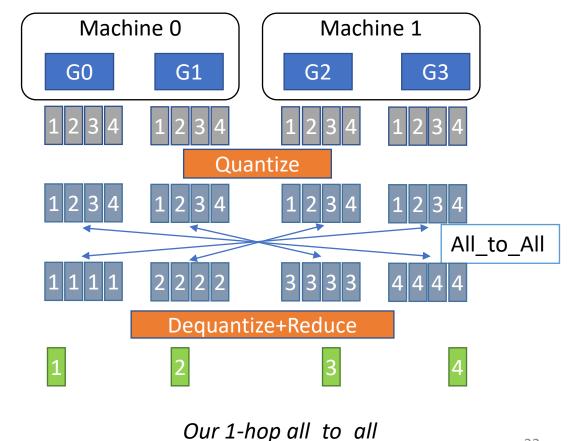
Too many Quantizations

Challenge 1: Too many Quantizations

Solution 1: Replacing ring-based reduce\_scatter with 1-hop all\_to\_all

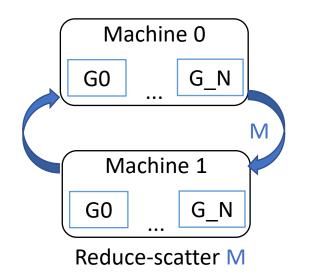


NCCL Ring-based reduce\_scatter
# of sequential Q+D == # of GPUs

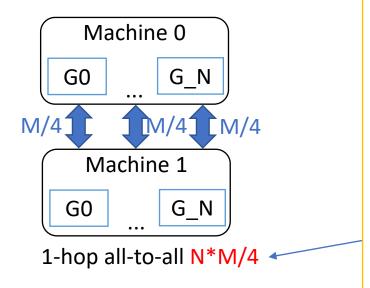


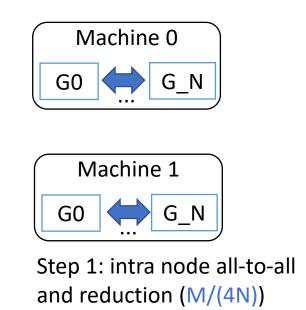
# of sequential Q+D == 1

Challenge 2: Issue with 1-hop all\_to\_all -> communication volumes blow-up



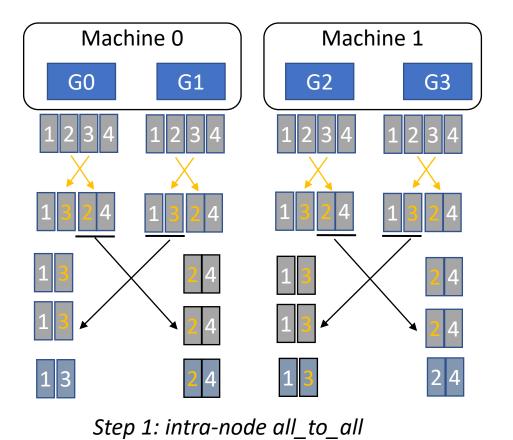
N gpu per node, model size M

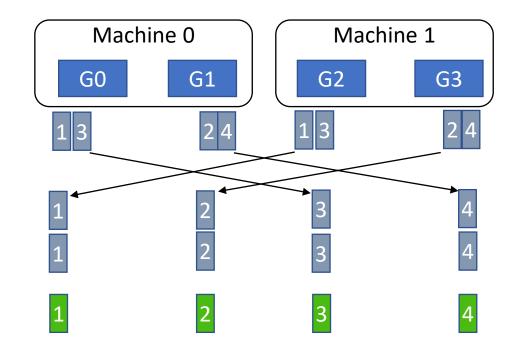




#### Solution 2: Hierarchical all-to-all

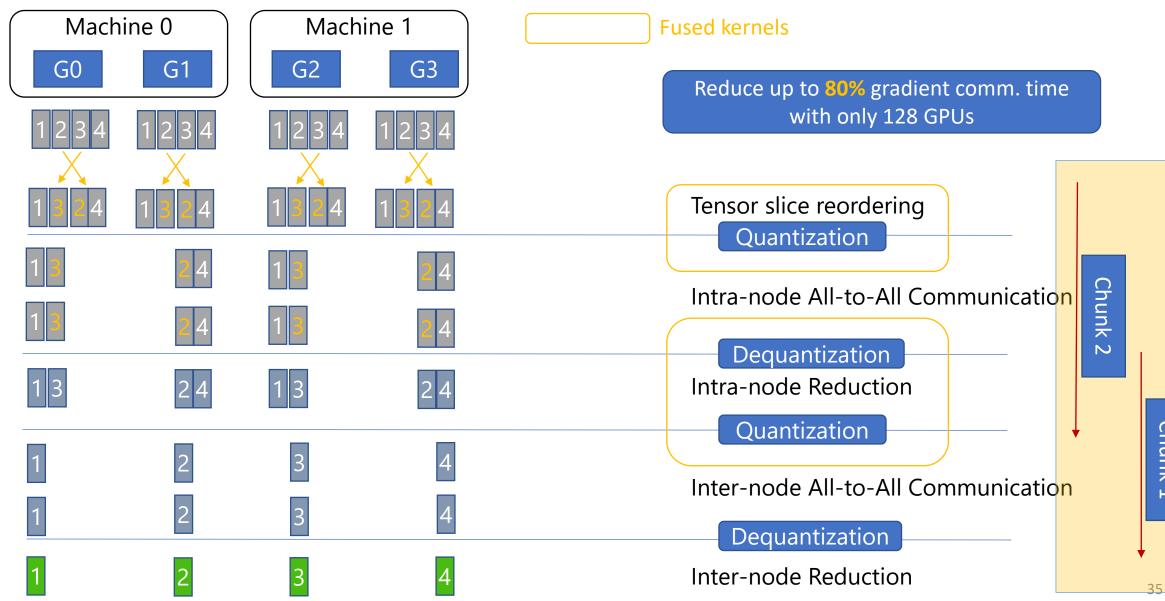
Challenge 3: Hierarchical all-to-all (Data-misplacement) Solution 3: Tensor slices reordering





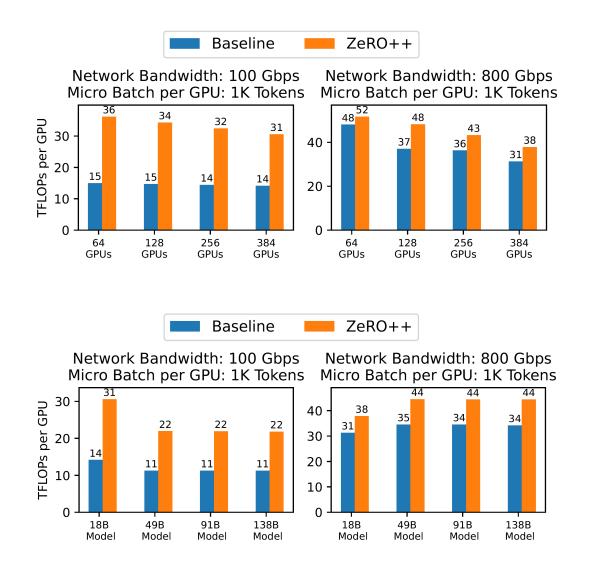
Step 2: inter-node all\_to\_all

#### Further Optimization: kernel fusion & overlapping



#### End-to-end Evaluation

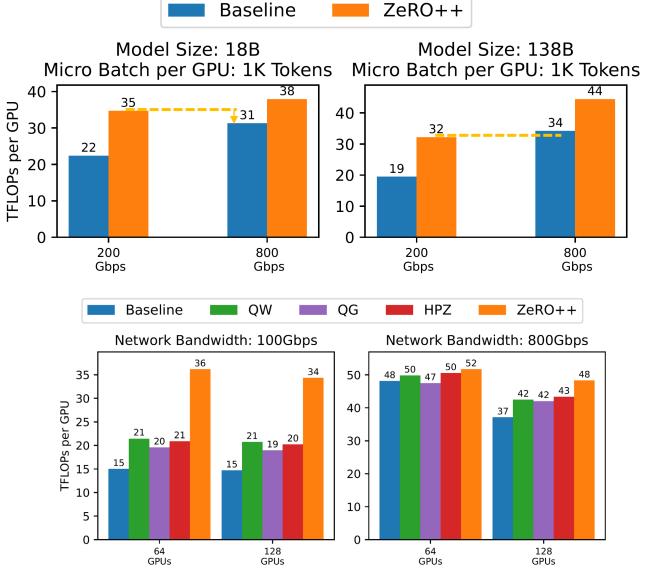
- ZeRO++ on different number of GPUs
  - ZeRO++ improves throughput on different scalability levels
  - 100Gbps: 121% 140% speedup
  - 800Gbps: 8% 30% speedup
- ZeRO++ on different sizes of models
  - ZeRO++ shows consistent speedup regardless of model size
  - 100Gbps: over 100% speedup
  - 800Gbps: up to 30% speedup
  - 10Gbps: up to 300% speedup



#### End-to-end Evaluation (Cont.)

- ZeRO++ democratizes large scale training
  - ZeRO++ can achieve the same or better throughput with only ¼ of bandwidth
  - Confirms our 4x communication reduction

- Ablation study of individual optimizations
  - ZeRO++ achieves a good composition of individual optimizations



## Summary of ZeRO++

- 3 novel communication optimizations on top of ZeRO
  - Reduce communication volume from *3M to 0.75M*
- End-to-end evaluations show 50%-140% speedup on various test scenarios
- Open-sourced as part of DeepSpeed
- LinkedIn reports 2.4x speedup in their training stack by using ZeRO++
- Read more details in the paper: "ZeRO++: expand scalability to power bigger models on more devices by minimizing communication cost" – ICLR '23

# Exploring new ideas: MVAPICH + NCCL can unlock next level ofperformance!

- Impact-first mindset vs. publication-first mindset
- Build on top vs. build from scratch

0

• Collaborate not compete! But also, collaborate and compete!





We are looking for people and organizations to support the open-source DeepSpeed ecosystem

Make your first pull request ©

https://github.com/microsoft/DeepSpeed

www.deepspeed.ai

© Copyright Microsoft Corporation. All rights reserved.